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‘Quantitative Estimation of Trace Chemicals in Industrial Effluents
with the Sticklet Transform Method

Naresh C. Mehta', E. T. Scharlemann, Charles G. Stevens
Lawrence Livermore National Laboratory, L-183
Livermore, CA 94550

ABSTRACT

Application of a novel transform opefator, the Sticklet transform, to the quantitative estimation of trace
chemicals in industrial effluent plumes is reported. The sticklet transform is a superset of the well-known

derivative operator and the Haar wavelet, and is characterized by independently adjustable lobe width and

separation. Computer simulations demonstrate that we can make accurate and robust concentration estimates of
multiple chemical species in industrial effluent plumes in the presence of strong clutter background, interferent
chemicals and random noise. In this paper we address the application of the sticklet transform in estimating
chemical concentrations in effluent plumes in the presence of atmospheric transmission effects. We show that
this transform retains the ability to yield accurate estimates using on-plume / off-plume measurements that
represent atmospheric differentials up to 10 % of the full atmospheric attenuation.

Key words: Sticklet transform, Haar wavelets, derivative spectroscopy, classical least squares, remote chemical
sensing, concentration estimation.

1. INTRODUCTION

The measurement of chemical effluents by remote airborne, or even space-based, ultra-spectral infrared
spectrometry presents an attractive technological approach to wide area chemical monitoring. However, before
this technology can be implemented as 'a quantitative tool, the problem of separating gaseous target signatures
from background spectral features must be solved. A number of approaches to this problem are under active
investigation. The most popular among these take advantage of the extensive information provided by imaging
spectrometers. The techniques of principal component analysis' and matched filtering® use this information to
identify spectral components in the background surrounding the plume. The quality of the results rests on the
assumption that the materials under the plume are to be found in the surrounding scene; at some level this
assumption breaks down. In order to mitigate this constraint, techniques that do not rely on the similarity of this
background need to be developed.

' Derivative spectroscopy is a popular tool among analytical chemists due to its ability to detect weak
absorption features in the vicinity of strong lines. But its usefulness can be limited by its susceptibility to high-
frequency random noise. In feature extraction studies using wavelets**, components of varying sizes and
strengths, superimposed on a broad background, have been detected with wavelets of different scales. To the best
of our knowledge, however, no study has reported a quantitative estimation of component strengths in cluttered
signals using wavelet analysis. ' ‘ :

We recently reported’® a novel method of feature extraction from cluttered signals. We.employed wavelet- -
like transform operators, called Sticklets, in the detection and concentration estimation of chemical species in
atmospheric remote sensing data at optical wavelengths. We demonstrated the superior performance of the
sticklet transform in robust estimation of trace chemical concentrations against ‘a wide variety of backgrounds in
clutter-dominated remote sensing scenarios. We studied the susceptibility of the sticklet transform estimation in
the presence of random noise and ambient chemical interferents, and investigated effects of sensor binning and

.instrument lineshape. A comparison showed the sticklet transform method to be superior to derivative and Haar

'Contact author: mehta7 @1Inl.gov



wavelet operators in concentration estimation. It was recognized that atmospheric transmission would pose a
significant hurdle because of the presence of a large number of sharp absorption lines of atmospherlc constituents
in the mid-IR spectral band.

In this report, we investigate the impact of atmospherlc transmission at mid-IR wavelengths on the
performance of the sticklet method. We begin with an exposition of sticklets in the next section, describing their
properties, and contrasting them with wavelets and derivative operators. We then present results of computer
simulations to demonstrate the superior predictive capability of sticklets in multivariate feature extraction ‘
compared to the classical least squares method. Simulation results including atmospheric transmission effects
follow, ending with-a few concluding remarks. ‘

2. STICKLET TRANSFORM

One of the simplest waveforms used in wavelet analysis®' is the Haar wavelet, which comprises two

adjacent lobes with equal widths and equal but opposite amplitudes; the separation between the two lobe centers
equals the lobe width. An extension of the Haar wavelet is the concept of a Sticklet operator where the two lobes
are separated, i.e. a sticklet has a stick-figure resemblance to a Haar wavelet. One can generate a family of
sticklet operators by independently adjusting their lobe widths and separations; Figure 1 illustrates the triangular
sticklet space encompassed by sticklets of varying lobe widths and separations. One immediately realizes from
Figure 1 that Haar wavelets form a subset of sticklets.
In the lower left-hand corner of
Figure 1, we have the derivative operator

. ‘J—Lr ‘ with both lobe width and separation of one
«‘gx%\c bin. Starting with the derivative operator,

T 0@‘ \ T as one moves along the diagonal, one
5 % & encounters Haar wavelets at larger scales,
= . , E  with lobe widths and separations
2 / Sticklets g increasing together. Similarly, we can
~  Derivative » @ define sticklets along the abscissa that are

' | . | characterized by lobe width of one bin but
\ " | increasing lobe separation. From any

Lobe separation ——» point along the x-axis, where it has a lobe

width of one bin and an arbitrary lobe

separation, a sticklet undergoes a

smoothing process as it moves vertically

up in the sticklet space. While retaining
- the starting lobe separation, a sticklet lobe

gets wider until it reaches the diagonal
' where it becomes a Haar wavelet with
- equal lobe width and separation. In the remainder of the sticklet space, one encounters a combination of
independently varied lobe widths and separations. Note that since one cannot have a sticklet with a lobe width
wider than the separation without overlapping lobes, the sticklet space is confined to the triangular region below
the Haar wavelet diagonal.

The primary advantage of the sticklet transform operator over the Haar wavelet is that it provides an
additional degree of freedom in that we can change a sticklet’s lobe width and separation independently, whereas
the lobe width and separation vary together as we scale a Haar wavelet. We will show in what follows that this
extra degree of freedom plays a key role in feature extraction utilizing sticklets.

Transform properties of the sticklet operator are illustrated in Figure 2. We operate with derivative, Haar
wavelet and sticklet operators on a signal which contains both broadband and narrowband features. A derivative
operator attenuates the broadband feature without affecting the narrow feature in the signal, while the Haar
wavelet attenuates the sharp feature while preserving the broad feature. By contrast, the pure sticklet operator

Figure 1. Stcklet space spanned by lobe separation along
the abscissa and lobe width along the ordinate. Haar
wavelets scale along the diagonal. Smoothing of sticklets
occurs as one moves vertically up from the x-axis.



‘ . : Broadbénd preserves both the broadband and narrowband
Derivative -‘I" “““"‘ Attenuation  features of the signal; sticklets are able to detect
. desired signal features without attenuating

] Narrowband  features at different scales.
Wavelet: Attenuation, As'shown in the earlier studys, a sticklet

operator can be constructed by combining

 Sticklet _Ll‘ No (convolving) a derivative operator with a simple
: Attenuation smoothing waveform. A derivative operating

- , on a rectangular smoothing waveform yields a

narrow sticklet with two single-bin lobes and a
separation equal to the width of the rectangular
waveform, while a triangular smoothing
waveform leads to a Haar wavelet. A general
sticklet with arbitrary lobe width and separation
is a convolution of a derivative operator and a -

Figure 2. Attenuation signal features due to derivative,
Haar wavelet and sticklet operators. Sticklet preserves
both broadband and narrowband features in the signal.

trapezoxdal smoothmg waveform.

We can define higher-order stlcklets that have more lobes, with equal widths and same separations
between lobes; the number of lobes in a higher-order sticklet is one more than its order. The even-order sticklets
have reflection symmetry around a vertical axis, while the odd-order sticklets have diagonal reflection symmetry.
For simplicity, the lobe amplitudes correspond to coefficients of Taylor’s series expansion. Higher-order sticklets
with narrow adjacent lobes of single-bin widths act as higher-order derivative operators.

3. FEATURE DETECTION AND ESTIMATION

A common approach to multivariate feature detection and estimation is the Classical Least Squares (CLS)
method, a maximum likelihood estimator. With this method the rms error between the composite signal and a
function composed of a set of candidate components, appropriately weighted by thelr strengths, is minimized.

The composite signal in the matrix form is given by

S=K-CL, . o ' o (1)

where the signal vector § (length n, say) is related to component strengths given by vector CL (length m, say) -
through a transfer matrix X (dimensioned »n x m).. The K matrix contains the reference or library components,
whereas vector CL specifies their weights. Equation (1) describes how the composite signal § is constructed from
library components K with the strengths specified by CL.

The component strengths can be estimated’ by

CL=(K"-K)'-K".S, . | | )

where superscript 7 signifies a matrix transpose and superscript —1 indicates the inverse of a matrix. In practice,
one is given a composite signal S with the task of estimating the strengths CL of target components using eq. (2),
given access to a library matrix K of target components. As mentioned above, the CLS method often yields
inaccurate and non-robust predictions since it is sensitive to any contributors to the composite signal that are not
sought or accounted for, including non-random and random noise, and interferents similar to target components.
The Sticklet Least Squares (SLS) method involves an additional step before applying the maximum
likelihood estimation: instead of using the given composite signal and library components, we utilize their sticklet
transforms.  Sticklet, transforms are computed by convolving the composite signal and individual reference
components with a response function representing an appropriate sticklet. Then, using these sticklet transforms,
the component strengths are estimated with the CLS method as before. For each sticklet, characterized by its
order, lobe width and lobe separation, the SLS method calculates a strength estimate for each target component.



Since both the lobe width and lobe separation can be adjusted independently in a sticklet of a given order,
we can generate a two-dimensional (2-D) map of strength estimates for each target component as a function of
sticklet width and separation. (The 2-D strength estimate map discussed here is not to be confused with the
wavelet transform of a signal or a 2-D sticklet transform, not discussed here.) Following the convention of the
sticklet space in Figure. 1, strength estimates are plotted as a contour map with sticklet width along the y-axis and
lobe separation along the x-axis. Such a 2-D map displays at a glance which regions of the sticklet space (lobe
width and separation) may offer superior predictions of the strength of a particular target component. It is
-important to realize that the SLS method generates an independent estimate map for each target component.

~ As we do not know a priori which sticklets offer good performance for a target component, we analyze a
composite signal with known strengths of target components. From the 2-D estimate map for each target
component, we then select the sticklets that make the best predictions of its strength. In order to provide reliable
and consistent predictions, these sticklets must be immune to the effects of varying non-random and random -
noise, and interferents. Once the component-specific sticklets are identified, we can apply them to any composite
signal to yield accurate and robust estimates of target component strengths. ‘

4. REMOTE CHEMICAL SENSING

In order to demonstrate the utility of sticklets in feature detection and estimation, we undertake the study
of a fairly complex experimental scenario, as might be encountered in atmospheric remote sensing from an
airborne platform. " The objective is to estimate the concentrations of trace chemicals in the effluent plumes
emanating from industrial smokestacks. We restrict our attention in this study to the daytime remote sensing
scenarios in the mid-infrared spectral range (3 — 4 um).

Solar radiation, reflected from an unknown background, propagates through the ambient atmosphere and
through a localized plume under investigation, before reaching a remote sensor. We assume that the sole source
of infrared radiation reaching the remote sensor is the reflected solar radiation, i.e. there are no emissions from the
atmospheric or plume constituents. The spectral measurements are made by pointing the sensor in two viewing or
look directions: through the plume under investigation and a nearby location outside the plume.

The on-plume ¢omposite spectrum measured at the sensor can be written as -

I,=R-pT X% .g2% S 3)

where R represents the solar radiation spectrum impinging on the background, o is the background reflectance, T
is the atmospheric transmission, ZaT represents the sum of absorption due to target chemicals in the plume,
and Z @, represents additive absorption due to interferent chemicals in the plume. Note that all the quantities in

eq. (3) are wavelength-dependent. 'Similarly,' the off-plume composite spectrum can be written as
Iojf:R"p"Tl, o . )

where the primed symbols represent the same quantities as in eq. (3); for the off-plume pointing direction, the
absorption due both to target and plume interferent chemicals is absent. Since the incident solar radiation.
spectrum is the same in the nearby on-plume and off-plume look directions, we write the ratio of the on-plume
and off-plume spectra as

R =1,/ _(p/,o)(T/T)eZ Z“’.. o ' )

Assuming that the background reflectance and atmospheric transmission are similar for the on-plume and
off—plume look directions, we can write the composite signal as



S=log, R, =log,(do-6T)+D> a +Y o, +N | ()

where J0=p/p and ST=T/T represent small fluctuations (around 1) between the on-plume and off-plume

values of background reflectance and atmospheric transmission, respectively. We have added zero-mean

Gaussian random noise, A, to the composite spectrum. Again, all quantities in eq. (6) are wavelength-dependent.
Our goal is to accurately determine the values of absorbance & (expressed as the product of volumetric

concentration and path length or ppm-m) for target chemicals in the plume under investigation. This must be
accomphshed in the presence of unknown fluctuations in background reflectance (60) and atmospheric

~ transmission (ST ), and against absorption ¢; due to interferent chemicals in the plume and random noise N. We
apply the two least squares methods to estimate ¢, , given the composite spectrum S.

5. BASELINE SCENARIO

We utlhze a passive sensor in the mid-infrared spectral range, between wavenumbers 2880 cm™ (3.47
um) and 3000 cm™ (3.33 um) The library spectra for the target chemical species are measured in 2048 spectral
bins separated by ~0.06 cm™. We also obtain spectra of background reflectance and random noise in the same
spectral bins. For convenience in this proof-
a .of-concept study, we generate the composite
0.005 - Isopropanol . spectrum by adding absorbance due to

' specified concentrations of target chemicals to
0.004 1 background reflectance contribution and
random noise.

The -baseline chemical sensing
scenario under study is shown in Figure 3.
The spectra (absorbance vs. frequency) for
three  target  chemicals - ~ butanol,
chloromethane  (methyl chloride) and
, isopropanol - are shown in Figure 3a; a
Noise representative random noise spectrum is also
shown. These molecules were chosen to
represent narrow, medium and broadband
spectral features: chloromethane has a large
number of narrow spectral features, whercas
isopropanol has two medium-width sPectral
features between 2960 and 2980 cm
comparison, the butanol spectrum lacks '
distinct features in the spectral range under
consideration here.

We have chosen the concentrations of
Comp051te signal target chemicals (in ppm-m) to yield similar
0.00 {#——— — —- e S L levels of absorbance (~0.002) in the mid-IR

- , T , : ; ; spectral region. The random noise is set at a

2880 2900 2920 2940 2960 2980 3000 level (~0.0001) that represents the instrument
noise level approachmg the theoretical limits
for a 0.5 cm dispersive spectrometer on a
Figure 3. Clutter-dominated chemical environment. sunny day
a. Mid-IR spectra of target chemicals. b. Clutter We show the relative contributions of
background and composite spectra. Clutter is about target chemical absorbance and background
20 times stronger than individual target absorbance. reflectance  for  the  clutter-dominated

0.003 -
0.002 -
0.001 -
0.000 -

Background

Absdrbance (arbitrary units)

Composite
spectrum

Frequency (cm'l)



environment in Figure 3b; notice the different ordinate scale. The contribution of a representative material
background, log, dp (~0.04) from eq. (6), by far dominates the composite signal. For the baseline case, the

random noise is a factor of ~400 below the background and the absorbance due to individual target chemicals is
about 20 times the noise level (SNR ~20), i.e. a clutter-to-signal ratio of ~20. ;

As pointed out in the last section, the first step in the SLS method involves generating 2-D estimate maps -
for the target chemicals since we do not know a priori which sticklets will yield accurate concentration estimates
for each target chemical. Figure 4 presents examples of the concentration estimate maps for the three target

Butanol Chloromethane Isopropanol
05:[15,21] 05:[3,19] 05:(5,13]

Figure 4. Concentration estimate maps for three target chemicals obtained with the sticklet
least squares method. Sticklet lobe separation and width are along the x- and y-axis. Dark
(grey) areas represent underestimates (overestimates) while light areas yield accurate
predictions. Optimum sticklet marked for each target chemical. '

chemicals generated with the SLS method. Recall that each 2-D map follows the sticklet space convention in-
‘Figure 1 and displays the concentration estimate as a function of sticklet lobe width along the ordinate and lobe
separation along the abscissa. :

Each estimate map displays estimates within +10% of the correct value, where dark (grey) areas indicate.
underestimates (overestimates) of more than 10%. Light regions of different size in the sticklet space yield good
predictions for different chemicals. For butanol, limited number of sticklets offer superior performance, while
chloromethane and isopropanol are characterized by extended areas of optimum sticklets. Sticklets yielding
accurate predictions seem to be aligned in vertical bands, indicating that the lobe separation is a more important
parameter than the lobe width. _ h '

Following a statistical procedure outlined in the previous study’, we choose an optimum sticklet for each
target chemical that yields a robust concentration estimate; optimum sticklets for the three chemicals under study
here are shown in Figure 4. If one were to analyze an unknown composite spectrum using these molecule-
specific optimum sticklets, one would expect to obtain accurate estimates of target chemical concentrations.
Table 1 compares the concentration estimates obtained with the optimum sticklets with those using the CLS

Table 1
Concentration Estimates
CLS SLS
Butanol (5 ppm-m) 39.6 + 0.01 ppm-m 05:[15,21] 4.99 + 1.3 ppm-m
Chloromethane (25 ppm-m) 1209 £ 0.09 ppm-m  0O5:[3.19] 24.9 + 0.16 ppm-m
.Isopropanol (5 ppm-m) 106.1 +0.02 ppm-m  ~05:[5,13] 4.98 + 0.07 ppm-m

method. We also include in Table 1 an uncertainty in concentration estimates due to random noise realizations,



~ Predicted Concentration (ppm-m)

As mentioned earlier, in the presence of any contributors to the composite spectrum-that are unknown or
not accounted for, the CLS method can yield grossly inaccurate estimates. In Table 1, the CLS concentration
estimates for the three target chemicals are inaccurate due to slowly varying clutter background included in the

Isopropanol : 5 ppm-m

300
250 1
200
150 A
100 +
50 4

0

5.04 4

5.00 -

4.96

4.92 1

0 5 10 15 20 25
Clutter Background

Figure 5. Clutter mitigation. ~ Concentration
estimates for isopropanol (5 ppm-m) with the CLS (a)
and sticklet (b) methods. Error bars represent noise

‘uncertainty in concentration estimates (too small to

be seen in the CLS method).

Note that the CLS method can yield negative conce

composite spectrum; the results are virtually
insensitive to the high-frequency noise as seen
by small uncertainty. By contrast, the SLS
method yields very accurate predictions: (error <
0.5%) that are subject to a somewhat larger
imprecision due to random noise.

To be useful, the optimum sticklet for
each target chemical must provide robust
concentration predictions against determinate
noise such as background albedo and random
noise, as well as interferent chemicals. In the
previous study’, we investigated in detail the
impact of these factors, as well as varying
clutter-to-signal and signal-to-noise regimes, on
the performance of the sticklet transform
method. For ‘the remote chemical sensing
scenarios we are considering here, background
clutter is, by far, the most dominant contributor
to the composite spectrum, as shown in Figure
4b; the contribution of atmospheric transmission
will be discussed below. Although, the CLS
method is insensitive to random noise, its
predictions are strongly affected by slowly
varying background reflectance. '

Figure 5 compares the performance of
the CLS and sticklet methods against different
kinds of clutter backgrounds. The CLS
prediction of isopropanol concentration varies
widely (between -13 and 278 ppm-m) against
different backgrounds, while the SLS method
yields a very accurate (~4.99 ppm-m) which is
virtually immune to  varying  clutter
backgrounds. As pointed out earlier, the sticklet
method is somewhat more sensitive to random
noise as represented by the error bar in Figure
Sb; the imprecision due to noise variations in the
CLS method is imperceptible in Figure 5a.
ntration estimates since it is an unconstrained

maximum likelihood estimator; the SLS method, essentially the same least squares estimator preceded by a
sticklet transform, can also.yield negative concentration estimates, albeit far more infrequently.

6. EFFECT OF ATMOSPHERIC TRANSMISSION

)

Depending on the altitude and range of the remote sensor platform, reflected solar radiation, after passing
through the effluent plume near ground, may propagate through a substantial extent of the atmosphere. If one
includes atmospheric transmission, for example obtained from FASCOD3", in the analysis only through eq. 3,
ignoring the off-plume signal, one ends up with a composite spectrum dominated by a large number of sharp
absorption lines of atmospheric constituents, mostly water and methane in the mid-IR spectral band under study
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Figure 6. Composite spectrum (smooth curve)
modulated by 5% differential atmospheric transmission
(see text). Notice the composite signal (sum of
absorbance due to trace amounts of three target
chemicals) superimposed on the composite spectrum.

here. Under these circumstances, the sticklet
method has little chance of success, particularly
if atmospheric absorption lines attenuate the

distinct spectral features of target chemical

species.

The mitigating factor is the inclusion of
the off-plume signal in the analysis. Considering
that typical plume dimension is on the order of a

few meters, especially upon emanating from the

smokestack, the on-plume and off-plume look
directions are separated by perhaps no more than

100 m. In such a circumstance, OT =T /T in
eq. (6), representing small fluctuations in
atmospheric transmission can be rewritten as
differential  transmission O =1-¢e(1-T),
where €is on the order of 1 — 10%. Then, one
can include this differential transmission ST with
different values of €in eq. (6) for the composite
spectrum.

. We show in Figure 6 the composite
spectrum modified by a 5% differential
transmission, along with the original composite

spectrum (smooth curve) from Figure 4b. Notice the composite target signal (sum of absorbance due to trace
concentrations of three target chemicals), superimposed upon the smoothly varying clutter background; it is
invisible in the presence of strongly-fluctuating atmospheric transmission.

It is ot difficult to imagine that both least squares estimators would be hard-pressed to provide accurate
or robust concentration predictions for the situation shown in Figure 6. Indeed, the CLS method offers
concentration estimates that are not only grossly inaccurate but also change substantially as the level of

differential transmission varies.

In order to assess the performance of the SLS method, we generate the 2-D concentration estimate maps
for three target chemicals for differential transmission levels of 1%, 2%, 5% and 10%. As an example, we show

Figure 7. Concentration estimate maps for isopropanol (5 ppm-
m). No atmospheric transmission included (left panel) and 5%
differential transmission (right). Optimum sticklet O5:[1,45],
marked on both panels, predicts isopropanol concentration within
+ 10% error for differential transmission as high as 20%.

-

in Figure 7 estimate maps for
isopropanol for the baseline case (no
atmospheric transmission) and with
5% differential transmission.  As
before, light areas represent sticklets
that provide accurate estimates; dark
and grey areas provide underestimates
and  overestimates,  respectively,
beyond 50% of the true concentration
of 5 ppm-m. Again, the lobe
separation is along the abscissa and
lobe width is along the ordinate.

One immediately observes that
in the presence of atmospheric
transmission, there is a much smaller
number of optimum sticklets that give
satisfactory performance. Instead of
extended light areas representing
optimum sticklets (left panel of Figure



7), there are fewer optimum sticklets when atmospheric transmission is included in the analysis. Out of a total of
some 10,600 sticklets encompassing the sticklet space, about 1400 give concentration estimates with an error of
léss than + 10% in the absence of atmospheric transmission. By contrast, for the 5% differential transmission
(right panel of Figure 7), there are only 20 optimum sticklets yielding estimates within + 10% of the true
concentration. Furthermore, upon combining the estimate maps with differential transmission up to 10%, we find
that only 5 sticklets yield estimates with less than + 10% error.

Table 2 lists these optimum st1ck1ets and their predictions (average values and errors due to different
levels of differential

Table 2 transmission). Optimum

Optimum sticklets in the presence of differential atmospheric transmission sticklet O5:[13,46] makes
Isopropanol (5 ppm-m) Chloromethane (25 ppm-m) a very accurate but
05:[1,45] 4.98 + 0.32 ppm-m 05:[1,92] 24.5 + 0.6 ppm-m somewhat imprecise
05:[3,45] 4.65 1+ 0.07 ppm-m 05:[3,92] 25 + 0.4 ppm-m prediction, while a
05:[11,43] 4.65 + 0.06 ppm-m 05:[5,36] 24.8 + 0.8 ppm-m neighboring sticklet,
05:[13,46] 5+0.23 ppm-m 05:[7,75] 27.1 + 0.7 ppm-m 05:[15,46] offers a very
05:[15,46] 4.83 + 0.01 ppm-m 05:[9,28] 25 + 1 ppm-m precise, and  slightly

» 4 inaccurate, concentration
estimate, against changing levels of differential transmission.

A similar analysis of chloromethane estimate maps yields only 5 optimum sticklets that give estimates
with less than + 10% error; predictions of these optimum sticklets against differential transmission are also listed
in Table 2. Using optimum sticklet O5:[3,92], one obtains an accurate and precise prediction for chloromethane
‘concentration. It turns out that for butanol we find no optimum sticklets that give estimates within + 50% error
and that are robust against all levels of differential transmission up to 10%.

Another consideration is the atmospheric variability. The analysis so far has been done using a particular
FASCOD3 atmospheric transmission model that has 25% relative humidity. Now we vary the relative humidity
in our model from 10% to 40%. For isopropanol (true concentration of 5 ppm-m), the optimum sticklet
05:{13,46] predicts a concentration of 2 to 6.9 ppm-m against relative humidity rising from 10% to 40%.
Optimum sticklet O5:[7,75] for chloromethane (25 ppm-m) yields 52 to 27 ppm-m for the same range in relative
humidity. - ' _

In the original study’, the optimum sticklets, obtained following a statistical analysis with random noise
realizations, had the property that some of their lobes were aligned with distinct spectral features of the target
chemical. This observation led to the. idea of a specific set of “designer” sticklets for each target chemical that .
yields superior performance. For example, isopropanol has two features in the spectral range 2960 to 2980 cm’
with a separation of 11.3 cm’ (see Figure 4a). Notice that the lobe separation of optimum sticklets for
isopropanol in Table 2 is between 43 and 46 bins (~2. 82 cm’'), i.e. approximately 1/4™ the separation between
spectral features.

In Figure 8a-c, we show the composite spectrum (with 5% differential transmission), the library spectrum
of isopropanol and the response function for optimum sticklet 05:[13,46], in the 2960 — 3000 cm™ spectral range.
We have aligned the sticklet response function (panel ¢), by arbitrary scaling and shifting, to the library (panel b)
and composite (panel a) spectra; the alignment is indicated by vertical dashed lines. One notices that the lobe
width of the optimum sticklet is comparable to the two spectral features of isopropanol. The lobe separation
closely matches the spectral distance between these features; note that one does not expect to perfectly match the
lobe separation to the spectral features of a target chemical in the presence of random noise and atmospheric
transmission fluctuations.

The situation for chloromethane is shown in Figure 8d-f. Two of the lobes of optimum sticklet 05 [3,92]
are aligned almost perfectly with two prominent features. of chloromethane around 2967 and 2989.5 cm™; again,
the sticklet lobe width is comparable to the narrow features of the target chemical. The estimates w1th other
optimum sticklets for chloromethane, listed in Table 2, suggest that there may be other configurations of optimum -
sticklets where various sticklet lobes may be aligned with other spectral features. Notice that the optimum
sticklets seem to be aligned with spectral features where atmospheric transmission coefficient is high.
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Figure 8. In the 2960 — 3000 cm™ spectral range, (a) composite spectrum with 5% differential
transmission, (b) library spectrum of isopropanol (with two distinct spectral features) and (c) six
lobes of the fifth-order optimum sticklet O5:[13,46]. Arbitrary scaling and shifting of sticklet for
alignment with composite and library spectra, indicated by vertical dashed lines. (d-f) Same
situation for chloromethane with optimum sticklet 05:[3,92]. '

7. CONCLUDING REMARKS

In a previous s'tudys, we demonstrated the utility of the sticklet transform method in robust estimation of
trace chemicals in effluent plumes. The SLS method offers.superior performance that is essentially immune to
background clutter, and is largely insensitive to random noise and chemical interferents. In this report, we

_investigated the impact of including atmospheric transmission on'the detection and quantltatlve estimation with

the sticklet transform method in remote chemical sensing.

The differential nature of the sticklet transform makes it somewhat more susceptible to interferents with
spectrally . sharp features having significant absorption. This is the case with absorption by atmospheric
constituents over the full atmospheric column. In order to ameliorate such effects, we examine remote sensing
scenarios that look at the difference between the on-plume and off-plume measurements. This approach allows us
to analyze data containing only a small fraction of the strong atmospheric attenuation in the mid-IR spectral
range. , ’

Computer simulations show that in the presence of varying levels of differential transmission up to 10%,
we can find a set of optimum sticklets for isopropanol and chloromethane that give concentration estimates within
+ 10% of the true values. For the spectrally broader molecule, butanol, we find sticklets that yield estimates
within + 50% of the true value up to differential transmission levels of 5%. This is to be compared to a fully
saturated 1 meter water vapor plume that presents ‘a 3.5% differential absorption. We anticipate further
performance improvements by incorporating a model for the residual atmospheric absorption between on- and
off-plume measurements. The largest contribution to the differential absorption is expected to be found near the
ground level where the pressure-induced linewidths can be estimated to high accuracy. This should reduce the
atmospheric residual to a much smaller value, providing even better sticklet estimates.
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In agreement with the simulation results reported in the first study’, we find that the optimum sticklets
chosen by the SLS method are aligned closely with distinct and prominent spectral features of target chemicals,
giving additional credence to the idea of a unique set of designer sticklets for each target chemical.

A number of issues remain to be resolved to complete the analysis of sticklets transforms in mitigating the
effects of background clutter and atmospheric attenuation in remote chemical sensing. In particular, we plan to
examine the performance impact of modeled residual atmosphere, as noted above, and of sensor effects such as
spectral resolution, binning and instrument lineshape. Finally, a detalled comparison of the SLS method with
other clutter mitigating. schemes, such as pr1n01pal component analysis', and with high quality remote sensing

data remains to be performed
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